Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.
نویسندگان
چکیده
The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.
منابع مشابه
The enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex
Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...
متن کاملCerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis
Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performi...
متن کاملP50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation
In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...
متن کاملProtocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesti...
متن کاملTrichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium
The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia
دوره 115 1-2 شماره
صفحات -
تاریخ انتشار 2010